Allied Academies

Call for Abstracts

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

Polymer science / macromolecular science is the subfield of material science with polymers. Researches are carried in multi-disciplinary domains like physics, chemistry, biology, and engineering. Polymer science comprises of 3 main Sub-disciplines, Polymer chemistry is one among them and is concerned with the chemical synthesis and properties obtained after the end result. Polymer Physics is of bulk properties of polymeric materials and its applications. Polymer characterization helps with analysis of chemical structure, morphology, and the physical properties with their compositional and structural parameters.

 Sub-Topic:

  • Introduction to polymer science and technology
  • Basic principles of polymer molecular weights.
  • Polymer structure and sub-atomic action
  • Polymerization catalysis
  • Functions and properties
  • Applications of polymers
  • Synthesis and processing techniques

Polymer chemistry is the sub-unit of chemistry which helps with the complete study of the polymer, its attributes, and properties by synthesis, characterization techniques. A polymer is a macromolecule formed by tiny units of monomer. The principal method in polymer chemistry is related to the other divisions of chemistry like organic chemistry, analytical, physical chemistry. every matter on earth poses, polymeric structures from ceramics to DNA. Polymer chemistry can be vastly studied further by nanotechnology, thus paves the way for major research ideas and innovations. Synthetic polymers like rubbers and plastics are used in our daily life, and natural polymers like biomolecules in which are human body functions.

Subtopic:

 

Polymerization is the formation of a three-dimensional network, by the polymeric chain reaction of monomers. There are many process and methods involved in polymerization. The reaction mechanism of functional groups in the chemical component, inherit the properties and functionality by polymerization. Formation of different polymeric chains, when bonded covalently to monomers, gives a long polymeric chain and has different properties and structures.

Subtopic :

  • Photopolymerization
  • Physical polymer engineering
  • Synthesis of polymers new structures and methods
  • Cationic polymer synthesis
  • Plasma polymerization
  • Ring-opening polymerization
  • Reversible addition-fragmentation chain transfer
  • Metallocene

The polymerization reaction is necessary for all our bodily activities from metabolism to growth. Also, polymer reactions help benefit high performance in the manufacturing and engineering sectors from home appliances to automobiles. For this understanding of polymerization, their flexibility, functions and reactions, control rate of polymeric reaction are needed. Polymerization reactions proceed with additional monomeric units or by linking the segments,  and condensation reaction with the emission of water and other by-products. Polymers are viscous, hence at the lower temperature, in the absence of the solvent, the viscosity of the mixture lowers the heat transfer and the polymer becomes crystalline, hence to overcome the shortcomings the reaction is carried out in a low viscous continuous phase.

Sub-topics:

  • Characterizing particle size and shape
  • Barbier reaction of polymer synthesis
  • Tools to design multifunctional polymer
  • Designing polymerization reaction systems
  • Reaction system design
  • Polymerization reactor operating  procedure
  • Polymerization design and reactor

Stereochemistry is a subdiscipline of chemistry studies the structure of molecules and their spatial arrangement of atoms. The study focuses on stereoisomers, i.e. which have the same molecular formula and continuous linkage of bonded atoms. The prefix stereo means “three-dimensional”. Stereochemistry plays a major role in the spectrum, supramolecular, organic, inorganic, physical and biological chemistry. The biological and physical property they hold has a greater effect and impact on the reactivity of the molecules.

Sub-topic:

  • The significance of stereochemistry in polymers
  • Alkane stereochemistry
  • Solid-state chemistry
  • Types and attributes of stereochemistry
  • Stereochemistry polymers 

Few Polymers after use tend to degrade by bacterial decomposition and result in a natural by-product such as gas, water, biomass, and inorganic salts. They are natural and can be made synthetically. they consist of ester, amide and ether and other functional groups. Artificially synthesized polymers by condensation reactions, and metal catalysts. Food packaging can be done in an alternative way which is environment-friendly, non-toxic and low cost. They have distinct uses and hence abides in all the fields from agriculture to engineering. They take a major place in drug delivery and nanomedicine. The pill en-capsules inside the polymer coated shield and sent inside the body. As the polymer emits the medicine, the polymer naturally degrades into natural by-product and it is excreted.

Sub-topics: 

  • Structure and properties of degradable polymers
  • Mechanism of breakdown
  • Applications and uses of biodegradable polymers
  • Future concerns and potential problems
  • Green Chemistry challenge
  • Degradable polymers in medicine. 

Polymeric biomolecules are produced by the living organism. Bio-polymers is made up of monomeric units that are covalently bonded to form larger structures. The polynucleotide is long polymeric chains of 13 nucleotide monomers. Polypeptides are short polymers of amino acids and polysaccharides are linear bonds. Few common biopolymers are rubber, suberin, melanin, and lignin. Cellulose is a native biopolymer in nature. Plants contain 33% of cellulose and cotton has 90% of cellulose content in it. Bioplastics are plastics derived from renewable biomass sources like wood chips, food waste, corn starch, fats, and oils. They are used in making of bottles and containers using microorganisms. Fossil fuel plastics are derived from petroleum and natural gas. Bioplastics are derived from sugar derivates including starch, cellulose and lactic acid. Bioplastics represent 0.2%of the global polymer market 
 

Sub-Topic: 

  • Biologically derived scaffolds
  • Protection and repair of hearing by polymeric materials
  • Life cycle assessment of polymers.
  • Biopolymers as biofilters and bio barriers
  • Biopolymers blends and bio-composites
  • Polymer mixtures and diffusion in polymers.
  • Biosphere plastic
  • Biodegradable plastic
  • Organic photovoltaics 

Bio-Chemistry is the study of chemical reactions taking place in the biological structures and organism. A combination of both biology and chemistry functions in three broad classifications, molecular genetics, protein science, metabolism. Biochemistry focus on the interaction between the biomolecules, understanding of tissues and function of organisms and organs. Polymers in biochemistry are closely studied by molecular biology, a molecular mechanism by which genetic information is encoded in the DNA. The body functions by the structure, function, and interaction of biological macromolecules which are polymers such as proteins, nucleic acids, carbohydrates, and lipids.

Sub-topic:

  • Biomolecules and metabolism
  • Body and its macromolecules
  • Molecular scale biological sciences
  • Plant biochemistry
  • Proteolysis
  • Molecular biology and structural biology
  • Computational biomodelling

Engineering that designs, analysis and modifies polymer materials is known as polymer engineering. Polymer chemistry wraps up the petrochemical industry, polymerization, structure, and characterization, properties, processing of polymers and structural relation and its vivid applications. The divisions of polymers define their applications. Thermoplastics, thermosets, and elastomers are the major classifications of polymers. Polymer engineers develop and tests plastics and process the plastics for the basic requirement. New polymers are created with various new advantages, hence it’s a boon for the polymer engineers. They keep track of labs, manage projects and process the requirements and design the equipment. 

Sub-topic:

  • Plastic polymers in engineering
  • Medical grade silicone
  • Polymer and Biomedical applications
  • Natural biopolymers and its uses.
  • Future scope for polymer engineering
  • Advancements and advantages. 

Material science is an interdisciplinary field understanding the applications and properties of matter. structure of the material connects and interactions between the intermolecular spacing, it's properties and processing methods and its performance in applications. Its always new materials paves way for new technologies and inventions. In material engineering, the creation of new materials by manipulation of different materials is performed. Material engineering can be applied in civil, chemical, construction, nuclear, aeronautical, agricultural, mechanical, biomedical or electrical engineering. A material is chosen by its strength, its properties, resistance to heat and corrosion. In a wide angle, the property of the material adds value. The useful properties of a material are in the structure of the material. Finally, the end products from the materials should be economical and society oriented

Sub-topics:

  • Materials informatics
  • Ceramic engineering
  • Composite materials
  • Polymer engineering
  • Forensic material engineering
  • Condensed matter physics
  • Emerging material science technologies
  • Tribology
  • Metal alloys and material science
  • Materials engineering and nanotechnology. 

Nanotechnology is among the most fascinating and recent research regions and it is a building machine at the sub-atomic scale and holds the control of materials on a nuclear (around two-tenths of a nanometer) scale. Polymer Nanotechnology which incorporates Nano drug, microelectronics, polymer-bound impetuses, polymer-based biomaterials, Nanoemulsion particles, electro nano-spun. A polymer containing nanoparticles is Nano polymer. The process from smaller scale to nano-particles prompt change in its physical, chemical, biological, electrical and magnetic properties. Polymer Nanocomposites (PNC) comprise of a polymer or copolymer with nanoparticles or nanofillers inside the polymer and generates 90.1% of plastics. These might be of a various shape (e.g., platelets, filaments, spheroids), however, no less than one measurement must be in the scope of 1– 50 nm. It is considered as the materials of the 21st century because of its surprising property of high electronic conductivity, magnetic properties, surface to volume ratio, conceivable outcomes. Recent breakthrough of self-assembling into productive structures with nano dimensions, nanomedicine, solar energy, ion storage as a chemical and genetic probe, catalyst support, films, nanomotors and lot more.

Sub-topic:

  • Nanocomposites
  • Applications of Novel Nanoparticles in Food Technology
  • Polycondensation Polymerization
  • Applications of Nanotechnology in Textile and wood industry
  • Advancement in Nanotechnology of Polymers and Fibres 
  • Session on: Polymeric Material Chemistry and Physics 

Usage of polymeric materials in the field of chemistry and physics is enormous and it opens to a wide area for research. The manipulation of chemical components and different polymer materials influences new products and their revenues. Polymer Engineering designs, analyses and modifies polymer material. Polymer engineering deals with polymerization, its structure, characterization, petrochemical, their properties, and processing of polymers, and its applications. The basic division of polymers are thermoplastics, elastomers. Thermoplastics have relatively low tensile moduli, lower densities. Common thermoplastics are nylon, polycarbonate, PET, acetal resin which is all ideal for consumer and medical products. Elastomers show low moduli with a reversible extension on vibrational absorption and damping which include natural rubber, polybutadiene, styrene-butadiene, nitrile rubber.  Thermosets include phenolic resins, polyesters and epoxy resins which are widely used in composites when reinforced with stiff fibers such as fiberglass and aramids. They have physical properties similar to steel. They are low density, light weighted material, and less fatigue, so ideal for safety-critical parts which undergoes much stress.

 Sub-Topic:

  • Biomaterials
  • Computational Modelling
  • Corrosion
  • Electronic, Optical & Magnetic Materials
  • Materials Performance
  • Materials Processing & Manufacturing
  • Mechanical Properties
  • Microstructure & Property Relationships
  • Superconductors
  • Welding Engineering

Polymer rheology is a testing technique on a material to withhold the stress when force is applied. The properties can be studied by laboratory testing, which helps optimize products and process condition, thus saving costs and potential wastes. Polymers such as polyolefins, liquids, adhesives, gels, and paste have different temperature zones and deformation rates. Rheology testing can be performed in the liquid phase or molten phase of the polymer or when completely dissolved in a solvent for intrinsic viscosity and relative viscosity. The end data from the test is further analyzed by the development process by the technicians to forecast the properties and to ensure the polymer obtained to meet the specification of the end user.

 Sub-topics:

  • Polymer rheology fundamentals and applications.
  • Importance of rheology in polymer processing
  • Various methods used in rheology
  • Steps involved in rheology
  • Advantages of rheology
  • Properties of the polymers from the rheology
  • Study of the material.
  • Flow properties of polymers. 

Green polymer chemistry involves the development of environment-friendly polymers focus on biodegradable materials, edible food wrappings/packaging, bio-based renewable monomers, develop polymers with a lower impact on the environment and perform high durable products. A complete life cycle analysis is conducted by the suppliers from starting raw materials to the final disposal which is safe for the environment and health. Usually the starting material as monomers, derived from bio-based renewable resources such as plants and replicating polymers in nature. In the case of synthetic polymers, a decrease of solvent usage and an increase of recycling and reusing methods are enhanced. E.g. Usage of PET is controlled by ethylene glycol produced from the natural feedstock. PLA (Polylactic Acid) is a thermoplastic used in packaging and other applications and can be composted or hydrolyzed to a monomer for reuse.

Sub-Topic :

  • Principles of green chemistry
  • Trends and future scope of Green Chemistry
  • Synthetic and processing techniques
  • Inventions and discoveries in green chemistry
  • Nanoscience and green chemistry
  • Green Chemistry and medical functionalities

The worldwide focus is on the importance of material sciences in the creation of new devices and systems. This aims at encouraging innovation, invention, imagination, and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which modifies the pace of modern polymer science and technology. It becomes the central organ of new multi-disciplinary polymer oriented appliances. 

Sub- Topics:

  • Radiation-sensitive and radiation-stabilized polymers
  • Polymers for microwave absorption
  • Degradation and Engineering plastics
  • Photo-electro conductive polymers
  • Electro-optics and nonlinear optics
  • Dielectric, ferroelectric and electric applications of polymers.
  • water-soluble polymers
  • polymers in photo imaging
  • intellectual property and fibers.

Polymer industry is the revenue reaping market and is the fastest growing. Countries like us, Canada are high investing in polymers and make huge profit says a survey. Europe, Asia,  American continents have great exposure in the market and solid investment. The global market for plastics is valued at 522.66 billion in 2017. Hence revamping of plastics by polymers make a huge life up in the market. increasing plastic consumption in the electrical and electronics industries, automotive. The growth of the constructions industry in the top leading markets of Brazil, China, India, and Mexico during 2015 and 2016  paves way for polymer market growth.  From 2015 to 2020 the global polymer market is expected to grow at a CAGR of 3.9% 

Sub-topics:

  • Polymer market
  • Forecast and analysis
  • Research in the plastic industry
  • Value of the plastic industry
  • Global polymer market size
  • Global scenario of the polymer industry 

Macromolecular substances are interesting and a wide area for research. Their properties are different in each phase, they are soft and rubbery, sometimes soft and plastic, and hard and rigid. These properties are enhanced further for more distinctive uses. Polymer chemistry extends its applications in recent times. The oligomers of a few repeating units to long chain repeating units brings polymer manipulation into the next level of advantages. Polymerization reactions materials produce new products with desired properties. The significant development lasts for 5 to 10 years. Recent Advances in Polymer Science supports present and future trends in polymer and biopolymer science. It covers all areas of research including chemistry, physical chemistry, physics, and material science dealing with polymer and biopolymer science. Advances in Polymer Science enjoys a longstanding tradition and a good reputation. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to other branches of science, or as a compilation of detailed information for the specialist.

Sub-topic :

  • Some recent studies of polyelectrolyte solutions
  • Degradable aliphatic polyesters.
  • Surface-initiated polymerization
  • Colloidal polymer science
  • Advances in polymer science
  • Polymer trending in science 

Polymers are large molecules formed by the tiny units of monomers. the microstructure relates to the physical arrangement of monomer. Classification of polymers is linear, branched and cross-linked. Polymers are used in our daily life. RNA and DNA are natural polymers that are the basics of life. Clothes made up of cotton are a natural form of Cellulose polymers, sweaters are made from wool, another form of Collagen polymer. Molecular science has developed enormously and has a major role in our lives. It has become a necessity in our daily routines the basic applications of polymers without which life wasn’t that easy. 

Sub-Topics:

  • Applications of polymers in computer science
  • Application of polymers in pharmacy 
  • Application in automobiles. 
  • Application in daily life 
  • Application in the medical field
  • Application in electronics. 
  • Application in the textile and leather industries 

Polymer physics studies polymers and their fluctuations, kinetics of the reaction, mechanical properties,  degradation and polymerization of polymers. Polymers are complex molecules and are complicated to solve by the deterministic method. Yet, the statistical approach yield results, since polymers are efficiently desirable in thermodynamic limit of many monomers. The shape of the polymer in liquid solutions is affected by the thermal fluctuations and modeling their shape again requires statistical mechanics and dynamics. Based on  Analog function between a polymer and a Brownian motion is used for the statistical approach of polymer physics. Characterization of polymers is done by size exclusion chromatography, viscometry, dynamic light scattering. These methods help in mathematical modeling of polymers and to understand the polymeric properties.

Sub-Topics:

  • Viscosity and viscoelasticity.
  • Crystallization, rheology, swelling, phase separation
  • Entanglements and crosslinking.
  • Mechanical properties, dielectric properties, optical properties, thermal properties.
  • The kinetics of degradation and polymerization, polymers subjected to deformation
  • Polymers at interfaces and in confined spaces.
Contact Desk

Previous Conferences

Special Issues

All accepted abstracts will be published in respective Allied Academies Journals.

Abstracts will be provided with Digital Object Identifier by

Special Issues
Copyright © 2024 Allied Academies, All Rights Reserved.